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Abstract. The problem of matching Green functions is studied for one or more coupled 
interfaces for those cases of physical interest, like quantum wells or superlattices, in which 
differential calculus is involved, e.g. Schrodinger equations. The Green functions are related 
to the transfer matrices of the constituent media and these can be evaluated by efficient 
numerical algorithms. One can then obtain the matched Green function of the composite 
system without having to directly evaluate any Green function or derivative thereof. The 
formulae for the matched wavefunction are also derived and practical aspects are discussed. 

1. Introduction 

This paper discusses the mathematical basis of a formalism which can be used to study 
matching problems when differential calculus is involved for configurations of physical 
interest, ranging from one interface-the free surface being a particular case-to the 
infinite periodic sequence of coupled interfaces constituting a superlattice. A significant 
intermediate case is that of two coupled interfaces, which may correspond to a thin 
film, a layer on a substrate, a sandwich configuration or a quantum well. All these 
systems are the subject of very active current research, on account of the considerable 
physical and practical interest they have. 

Matching problems can be formulated in terms of Green functions. One of these 
techniques, the surface Green function matching ( SGFM) method, has been reviewed 
recently [ 13. Similar concepts can also be found in [2]. While this gives an appealing 
physical picture in terms of scattering theory, the method depends on the evaluation 
of Green functions and their normal derivatives. This can entail a formidable numerical 
task in cases of physical interest. Consider, for instance, electronic structure calcula- 
tions based on some fairly realistic model. After effecting a two-dimensional Fourier 
transform we are left with a system of N coupled ordinary differential equations in z, 
the space coordinate normal to the surface. The corresponding Green function is an 
N x N matrix G(E, K ;  z, z ’ ) ,  where K is a two-dimensional wavevector and N may be 
a largish number. Even in cases where only one differential equation suffices, as in a 
one-band model, the evaluation of the G matrices and their derivatives may become 
a forbidding practical difficulty. In a situation similar to that depicted in figure 1, for 
instance, even the question of what is G, or G B  is none too clear. 

Another possible approach to these problems is based on the concept of the transfer 
matrix, which can be defined in different ways, depending on whether it transfers 

0305-4470/90/081405 + 16%03.50 @ 1990 IOP Publishing Ltd 1405 



1406 F Garcia-Moliner et a1 

amplitudes [3] or amplitudes and derivatives [4, 51. We shall follow the lead of the 
general analysis of [5], which has been used in  several applications [6-81. 

Now, these two approaches have complementary attractive features. The transfer 
matrix algorithms are very useful in practice for numerical calculations, while the SGFM 

method yields a more transparent physical picture and provides a good scheme for 
organising and obtaining physical information. The purpose of this paper is to blend 
the two methods and to establish the formal basis for a hybrid approach which provides 
an  efficient scheme for the calculation of the Green functions needed for matching 
problems. A first step in this direction was taken in [9], which was limited to the 
secular equation for bound states in a parabolic quantum well. In this case N = 1. 
More recently the case N = 1 has been fully analysed and the complete matched Green 
function G,(z, z ’ )  has been obtained for the composite systems, with practical applica- 
tions to the study of image potential states on metal surfaces and  a simple self-consistent 
treatment of inversion layers in semiconductor interfaces [lo].  The extension just from 
N =  1 to N = 2  poses new questions, as the objects involved become then non- 
commuting matrices. This extension has also been recently carried out, and has 
applications to the study of elementary excitations in superconductors and  to electronic 
states in lead salt superlattices [ 111. In all these cases the results have been satisfactory 
and it now seems interesting to study the problem with full generality. This is the 
purpose of this paper. 

Figure 1. Matching of A and R. Broken curves 
represent ideal matching. Solid curves represent 
non-ideal matching, e.g. a self-consistent potential 
profile. The question is: what is G, or G,? A B 

The general relationship between Green function and transfer matrix is given in 
section 2 .  There and thenceforth the two-dimensional Fourier transform is implied, 
the dependence on E and K is understood and  only the dependence on z and/or  z’ 
is explicitly displayed. Section 3 gives the surface Green function matching analysis 
in terms of transfer matrices for one interface, while section 4 discusses the important 
cases of the quantum well and superlattice structures. The wavefunction is discussed 
in section 5 and then the practical aspects and  the scope of applications are discussed 
in section 6. 

2. The transfer matrix and the Green function 

We start from the work of Mora et al [5], who discussed in detail the mathematical 
properties of the matrix M(z, zo) to be presently discussed. They studied a system of 
N ordinary, linear, differential equations of arbitrary order. Here we shall consider, 
specifically, second-order differential systems. Let Q( z ) ,  an  N-component vector with 
components cL,(z) ,  . . . , ICIN(z), be one solution of the system under study for a given 
value of the energy-or any other eigenvalue variable in general. The basis of this 
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system consists of 2 N  linearly independent solutions labelled j = 1,2 ,  . . . , 2 N .  From 
the j t h  solution we define the 2N-component vector 

The 2 N  x 2 N  transfer matrix M ( z ,  zo), which transfers amplitudes and derivatives from 
zo to z is then defined by 

(2.2) 
Here we are interested in discussing the general relationship between M ( z ,  zo) and the 
associated Green functions G(z, z’), in this case N x N matrices. The essential 
difference between these two objects is that M is solely determined by the differential 
system, while G requires also the specification of boundary conditions (BC). Thus we 
can anticipate that any relationship between M and G must involve parameters to be 
determined by the BC. 

@( z )  = M( 2, Z”)*( zo). 

Now, consider the spectral representation of G in the form 

This may include discrete and  continuous parts, for which the sum actually means an  
integral. The labels k, e.g. the quantum numbers in a physical application, could in 
general be vectors, or include discrete indices like a spin quantum number, but the 
concise form of (2.3) suffices to discuss the problem of interest here. Every Xk has an  
expansion in terms of a basis: 

(2.4) 

which can be used in (2.3).  Note that (2.3) is only a formal expression which, for the 
physical theory, must be evaluated by prescribing some appropriate limit. We choose 
the standard causal prescription in which, with our sign convention, E is limE+o( E + i ~ ) .  
Evaluation of (2.3) according to this picks out the contributions from poles where 
Ek = E V k .  In the final result this holds also for the basis functions of (2.4) and this 
finally leads to the general form 

where G and the W vectors depend on the energy variable E. This dependence will 
be understood everywhere. 

In  general there is one set of parameters, Cz, for z s z’  and another one, C ; ,  for 
z L z’. This accounts for the change in functional form that G( z, z’) must have depend- 
ing on sgn(z-z ‘ ) ,  subject to the continuity of G and the discontinuity of its first 
derivative, which is uniquely determined by the differential system. The form of (2.5) 
is easily seen to remain invariant under a change of basis, so we choose a basis of 
vectors @fli(z) defined to be canonical at some fixed point zo, i.e. 

(2.6) 4 ”( zo) = 4,. 
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It is convenient to define the N-component vectors @,(z), which represent Wj(z), 
and aDj(z) ,  which represent Wj(z),  so that 

(2.7) 

where A and D denote amplitude and derivative respectively. The 2 N  x 2 N  matrix 
M is consequently partitioned into four N x N matrices M A A ,  M A D ,  M D A ,  MDD so 
(2.2) is cast as 

The amplitudes appearing in (2.5) are to be read as a A ( z )  terms which, by (2.8) and 
(2.6), are combinations of M A A ( z ,  zo) and M A D ( z ,  zo). The postfactors @:(z) require 
careful treatment to account for the formal properties of adjoint operators. It is also 
convenient to group together the 2N x 2 N  matrix of C,  coefficients into four N x N 
blocks C,, ((U, /3 = A ,  D), consistently with (2.7) and (2.8). Everything is then compac- 
ted into terms involving only N x N matrices labelled by A and D. This leads to the 
final form 

z s z '  

z 2 z'. 

Here M, is defined in the following manner. Let M be y matrix which in 

(2.9) 

eneral 
can be a complex function of a complex variable w (e.g. E + ie, or E + iT for a resonance, 
with r finite). If 

M ( w )  = a(w) + ib(w) (2.10) 

Mc(o) = a ( w )  -&(U)  (2.11) 

then we define the transposed matrices M, a and 6. Then 

Note that w is not conjugated. The matrices McAP of (2.9) are defined according to 

The form (2.9) can be proved independently and directly by studying in detail the 
formal properties of differential operators and their adjoints and the consequences for 
their respective matrix representations, while using only the general properties of the 
transfer matrix acting directly on G with proper account of the ordering of z and z'  
to guarantee that the same functional form is preserved. The point is that (2.9) yields 
G in terms of the submatrices of M if the unknown matrices C,, can be obtained. 
These clearly depend on the specific choice of boundary conditions. 

Some general relationship can be established right away. We define the surface 
objects 

(2 .11) .  

@ =  G(z0, zo) 

(2.12) 
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Their inverses, when they exist, are defined in the subspace z = zo. Moreover 

(2.13) 

Then, from (2.9), 9 is given by 

and 

(2.15) 

By performing a first integration of the differential system one finds that, for systems 
with continuous coefficients, 

@ + I  - h g - )  = S (+)@-(-)g=s (2.16) 

For instance, for a Schrodinger equation with a given pseudopotential, cast in the 
matrix differential form described in section 1, s is - ( 2 m / h 2 )  times the N X  N unit 
matrix. However, s need not be a multiple of the unit matrix. Quite generally we are 
interested in systems where the second derivative usually appears only in the main 
diagonal and is multiplied by a real coefficient. Then s is a real, diagonal-and 
therefore symmetric-matrix. This fact will be used in the subsequent analysis. 

Consider now the logarithmic derivatives 

(2.17) 

These are determined by the BC on the left and on the right of zo, respectively, as will 
be seen presently. 

3. Surface Green function matching from the transfer matrices 

Consider the one-interface matching problem in which medium 1 on the left is matched 
at zo to medium 2 on the right. We take zo=O. The first question to decide is the 
matching rule. For a Schrodinger equation with a pseudopotential we must ensure 
the continuity of the logarithmic derivatives. More generally one must account for 
different effective masses or one must replace the derivative by some linear differential 
form appropriate for the different physical problems under study [ 11. For the present 
purpose it suffices to consider matching of logarithmic derivatives. Then the composite 
Green function G,, resulting from the matching of GI and G,, has a surface projection 
Ss given by 

g;1 = s; lsyP(+)  -s;lp;-’. (3.1) 

The BC away from the matching plane must now be specified. Suppose 1 is a 
semi-infinite medium. For any z < 0, (2.9) yields 

O )  = O ) C A A +  MAD(Z, o ) c z A ] l *  (3.2) 
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We then impose regularity at -CO, i.e. 

lim lim G,(E+ iE;z ,O)=O.  
t - - 0  :--r 

Put 

Mmo(* )  = lim lim M,,(z, 0). 
F - + O  :-*x 

Then, from (3.2), 

(3.3) 

(3.4) 

LMAA(-)CAA+ MAD(-)C ; A l l  = 0 (3.5) 

whence, by (2.17), 

a : " = T ; '  = - [ M A D ( - ) - ' M A A ( - ) ] I .  (3.6) 

Likewise, by imposing regularity at 00 if 2 is a semi-infinite medium, we find 

a\-)=v; '=- [MAD(S)-IMAA(+)IZ * (3.7) 

The causal limit F + +O is unnecessary (i)  for bound states and (ii) when the condition 
of vanishing amplitude is imposed at some finite distance, in which case the variable 
z of (3.3) and (3.4) stops right there. Physically this would correspond to studying 
the interface problem by putting the system inside two infinite barriers away from the 
interface, which can be a good approximation if this distance is sufficiently large. Note 
that both MAA(*) and MAD(*) diverge separately, but (3.6) and (3.7) converge. In 
practice the numerical evaluation of these terms is carried out for growing z until the 
result shows stable convergence. The point is that % c l ,  (3.1), is explicitly evaluated 
in terms of the corresponding transfer matrices of each constituent medium. 

Now for the complete G,(z, z'). Let p = 1, 2 denote one of the two parts and p the 
other one. For z and z' on the same side, G, can be expressed as the sum of two terms: 

(3.8) G,(z, z ' )  = G p d z ,  z')+Gpm(z, z') z, z' E p .  

The first one is the hard wall part 

GpX(z, z ' ) = G ~ ( z ,  z')-GGp(z, O)%,'G,(O, z ' )  (3.9) 

and the second is the matching part 

Gpm(z, z') = Gp(z, O)%~'%e,%~'Gp(O,  2 ' ) .  (3.10) 

These are the analogues of the hard core and potential scattering terms in ordinary 
scattering theory. 

The hard wall term describes medium p bounded in its own domain by an infinite 
barrier at z = 0. The BC on the left/right, as the case may be, is identically the same 
and so is the differential system-e.g. the potential-while the condition of vanishing 
amplitudes must be imposed at z = 0. Proceeding from (2.9) this yields, for side 1, 

z 4 z '  
z z z '  

(3.11) -(MAA(z, 0) + MAD(z, O)T; ')siMc~D(z',  0) i -MAD(z, 0)3; l (McAA(~ ' ,  0) + U;'&AD(z', 0)) 
Gix(z ,  z ' )  = 

where T ,  is given by (3.6), 

U; '  = - [~cAA( - )McAD( - ) - ' l I  (3.12) 

and the transfer matrices appearing in (3.1 1) are of course evaluated with the coefficients 
and potentials of the actual semi-infinite medium 1 of the real system. 
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Likewise, for side 2 ,  

z s  z’  
z z z ’  

(3.13) MAD(z, O)sZ(McAA(z’, 0) + QZ’M~AD(Z’, 0)) { (M,A(z, 0) + MAD(z, O ) V ~ ’ ) S Z M ~ A D ( Z ’ ~  0) 
Gzx(z, z’) = 

where V2 is given by (3.7) and 

a;’ = -[McAA(+)McAD(+)-’l* (3.14) 

with the transfer matrices of (3.14) belonging to the real part 2 of the matched system. 
If z and z’ are on opposite sides, then 

G,(z, z’) = G,(z, O)S,’S,S,’G,(O, z’) z E p ,  z‘ E p. (3.15) 

Clearly G, in this case consists only of a matching term, of the same form as (3.8), 
except that both GI and GZ are involved. Thus we must study terms of the form G,Sj’ 
and Bi’G,. We proceed again from (2.9) and find 

Gi(z, O ) g T 1  = [ M A A ( ~ ,  O)+MAD(Z, O)TTII 

GZ(Z, 0)s;’ = [MAA(Z, O ) +  MAD(Z, 0)V;’l 

z s o  

S;IGl(O, Z‘)=[M~AA(Z’, O)+UT’Mc-D(Z’, O)] Z’SO 
(3.16) 

z z o  

z’ 3 0. 9;’GZ(0, z’) = [ McAA( z’, 0) + Q;’McAD( z’, O ) ]  

The problem is thus fully solved: (3.1), (3.6) and (3.7) yield S, and (3.8)-(3.16) 
yield Gs(z, z’) for all possible configurations of (z, z’). For each partial constituent the 
final result is obtained only and exclusively in terms of its own real transfer matrices 
and only the asymptotic BC away from the matching plane need be used. These 
determine the logarithmic derivatives a‘,+) and 3’!-’, i.e. T;’ and V;’. One can define 
the dual logarithmic derivatives 

(3.17) (*)s = g - l ( * ) S r *  

It is easily seen that 

(3.18) 

This provides an interpretation for the four parameters appearing in G, in terms of 
the four logarithmic derivatives. 

The two points to stress are: (i) we need only to know the differential system on 
each side and the corresponding aysmptotic BC (ii) any G, obeying the same conditions 
of (i) and otherwise satisfying any arbitrary BC at the matching plane yields identically 
the same solution of the matching problem. This was proved in [9] on general grounds. 
The question of knowing the real Green function of each constituent medium need 
not arise. Any arbitrary extended pseudomedium satisfying the conditions of (i) can 
equally be used instead. This will be used in the next section. 

(-1s - (+)z, = u;l - Q;’. 

4. Quantum wells and superlattices 

Consider a system with the structure 1-1-2-r-3, meaning that 1 is the interface where 
media 1 and 2 match, while 2 and 3 match at r. Such structures occur frequently in 
systems of physical interest. For electronic states this would correspond to a quantum 
well (QW),  if medium 2 is a well, or to a tunnelling configuration if it is a barrier. Even 



1412 F Garcia-Moliner et a1 

if they consist of the same material, media 1 and 3 need not be equal, as there may 
be inhomogeneities due either to self-consistency or to one-sided modulation doping, 
for instance. The theory developed here does not rest on the assumption that they are 
equal, o r  even that they are specular images of each other. Also important is the 
superlattice (SL) . . . 1-2-1-2. .  . . Both QWS and SLS are the subject of intense current 
attention and one of the aims of the present work is to build up  a formalism which 
can be applied to such systems with full generality, including possible complexities of 
the models employed and/or  of inhomogeneities which may be present. 

All these problems involve simultaneous matching at the different interfaces and  
can be treated by an extension of the SGFM analysis so that the Green function G, of 
the composite system is obtained in terms of the G, matrices involved [ 1,9]. We first 
summarise the basic formulae for this case and  then give the solution in terms of the 
corresponding transfer matrices. 

We first consider the 1-2-3 system. The symbols 1, r will be used indistinctly either 
as labels or  to denote the unit of the corresponding interface, which is part of the 
matching domain with unit 

4 =1+r .  (4.1) 

We define the external medium (e), consisting of 1 on the left and 3 on the right, and  
the internal medium (i)  consisting of 2 inbetween. We define the entire projection Gi 
as a 2 x 2 supermatrix 

The diagonal terms are the corresponding projections at  the 1 and  r surfaces. Likewise 
we define 

(4.3) 

The prime on the left denotes derivative with respect to z and 'G(1, r) indicates that z 
is at 1 while z' is at r, and  likewise for 'G(r, 1). For the external part we define 

The entire projection of G, is defined as in (4.2) with Gi replaced by G,. Then the 
matching formula is 

5 (4.5) 6-1 = S-IIG e e 6-1 e - S;%]e;'. 
We now use the freedom to choose extended pseudomedia. For 1 we choose that G, 
for which 

(4.6) ',\+' = SI  

9 3 r  - 0  '9;;) = -s3. 

'9; - '  = 0 

while for 3 we choose that G3 for which 

(4.7) 
1 ( + I -  

Then S;"6, is the 2 N  x 2 N  unit matrix and  

-  TIS^ 0 
G e =  I/ 0 "3s3 1 1 .  (4.8) 
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T, is given by (3.6) with z = O  at 1 and V3 is V2 of (3.7) with 2 replaced by 3 and z = O  
at r. 

For the internal part we can likewise choose a convenient pseudo G, as was done 
in [9]. We choose that G2 for which 

’9;;) 5 0 ’ Y p  = -s2 Zr S2 ‘9;;’ = 0. (4.9) ‘Y‘+’= 

The merit of this choice lies in the fact that 

(4.10) 

Then -S;”6, is also the 2N x 2 N  unit matrix and the matching formula becomes 

B;I=B,I+G;1=G,’(G,+d,)G,l. (4.11) 

The secular equation yielding the eigenvalues of the matching states of the QW or 
sandwich structures can then be expressed as 

det(G,(E, K ) + G , ( E ,  K ) / = O .  (4.12) 

6, has been given in (4.2). 6,  is likewise obtained by working from (2.9) and imposing 
the BC (4.9), together with (2.14) and (2.16). The reference point, zo of (2.9), is now 
at I, so Y, (2.14) for instance, means 9, and so on. Of course the continuity of Y and 
the discontinuity of ’Y(*’ or ‘*’Y’ must also be obeyed at r. 

We define 

mu, = Mm,(r, 1) Pa, = M c a p ( r ,  1). 

Then evaluation of Yr from (2.9) yields 

(4.13) 

mA D(C D - C ~ D ) P  A D  = ~ A A S C L  A D - mA D ~ P  A A  (4.14) 

while from the discontinuity of ’%:=’: 

~ ” D ( C ~ ” - C ~ D ) ~ ~ , , = ~ D A ~ P A ” - ~ D D S C L A A + S  (4.15) 

whence the identity 

mDA-mDI,m&mAA = -sL(&s-’. (4.16) 

By determining the C,, coefficients of (2.9) corresponding to the choice of BC (4.6), 
(4.7) and using (4.11), we obtain 

(4.17) 

and 

G(r, 1) = (mAAm;kmDr,-mAr,)s. (4.18) 

The formula for G(r ,  I )  can be cast in a simpler alternative form by defining each m, 
as a submatrix of the reverse transfer matrix M, = M(1, r), from r to I .  Then 

G(r, I )  = -m&s. (4.19) 
The above formulae are to be applied to G i ,  i.e. G,. The four terms of Gi have been 
obtained in terms of transfer matrices across the finite domain inside the matching 
interfaces. It is easily seen that in the N = 1 case this reproduces the result first obtained 
in [9]. 
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For the SL we use the labelling . . .2-m-1-1-2-r-l-n-2-. . . meaning that m is the 
2-1 interface on the left of the domain defined as internal and  bounded by 1 and r, 
while n is the 1-2 interface on the right. The difference from the sandwich configuration 
is that the external domain now consists of two finite domains. The matching formula 
is similar to (4.5) with the difference [ l ]  that the external terms '6, and 6, are now 
replaced by 

(4.20) 

where 

f= exp(iqd1 (4.21) 

is the phase factor associated with the superperiod d = d,  + d2 and  I D  superwavevector 
q. We have used the fact that the ( m ,  1) and (r, n )  slabs are equivalent, so that, for 
instance, and  8 , ( m ,  1) is equal to G l ( r ,  n ) .  As before, the prime 
indicates differentiation with respect to the first argument. We now make for G I  the 
choice of BC analogous to that made in (4.4) for G2, i.e. 

is equal to 

!%I-) - 0. (4.22) i m  - --SI I 1  -SI II - t 9 ( - - )  - I @ + )  - '%\Z = 0 

Then 

(4.23) 

All the formulae are as in the previous case, with the terms of the internal domain 
identical and  those of the external domain now embodied in G,. The four terms of 
this are of the same form as (4.17), (4.19) but the transfer matrices involved require 
new specification. Thus, defining now m as the transfer matrix which transfers from 
1 to m, i.e. across the potentials of medium 1, we have 

(4.24) 

while defining m, as that matrix which transfers from m to I ,  i.e. the reverse of the above 

(4.25) 

With this the secular matrix 6;' of the SL is also evaluated only and exclusively in 
terms of transfer matrices which transfer across the potentials of the two constituent 
slabs. 

The complete G,(z, z') of the laminar system can now also be obtained in terms of 
transfer matrices. For the sandwich structure when z and z '  are in the external domain, 
G,(z, 2') is given by the formulae of section 3 with the reference point at 1 when they 
are on the left and  at r when they are on the right. When both arguments are inside 

G (  m, I )  = m&s. 

(4.26) 
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The intervening Green function elements for the variables z and z’  can be obtained 
from (2.9) once the chosen BC have been used to determine the parameters. With the 
choice (4.9) these are 

C ~ A  = CGD = o  
c;* = -s 
Ci~=m;imDDs= c:A 

(4.27) 

C G D  = s p A & i k -  m ; L m A A s .  

Another case of physical interest is that in which z and z’ are on opposite sides of the 
external domain, For instance, for z on the left and z’ on the right 

G,(z, z ’ j  = G,(z, Oj9;,’6,(1, r)9;:G3(r, z’) (4.28) 

which again can be obtained in terms of transfer matrices by using the results of this 
and the previous section. 

Finally, the case of the SL is equally treated by means of the corresponding SGFM 

formulae [ l ]  and the required Green function elements obtained in terms of transfer 
matrices by treating a slab of medium 1 in the same manner as one of medium 2 .  

5. The wavefunction of a matched system 

Many properties of physical interest-notably dispersion relations and spectral func- 
tions-can be evaluated directly from the Green function. Others explicitly require 
the wavefunctions to calculate, say, some matrix elements. Having obtained the 
complete Green function of the matched system from the transfer matrices of the 
consistent media, one can also obtain the wavefunctions in the same way. 

Consider first a one-interface problem. The formulae for the Green functions have 
their counterparts in formulae for the wavefunctions, just as in ordinary scattering 
theory the Lipmann-Schwinger and the Dyson equations are in correspondence. This 
can be formally proved in the SGFM analysis by using the reflection and transmission 
amplitudes, which can be written down in terms of 9,. For instance, consider a 
scattering state + corresponding to an incident state +’, an eigenstate of medium 1. 
Then 

+ ( z )  = 9 , ( z ) + G , ( z ,  O j 9 y ’ ( 9 5 - 9 i ) 9 L ’ 4 , ( 0 )  z s o  (5.1) 
whence 

+ ( O )  =@s,9e,’+,(o) (5.2) 

+ ( z )  = GAz, O)9;’%,%;’+l(0) z z o  (5.3) 

+’ (+O)  = ’9;-%;’+(0). (5.4) 

and 

whence 

Thus, for one given medium 

+yo) = ~ ; - l + ( o ) .  (5.5) 
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If we define 9 as the logarithmic derivative of the wavefunction, so that U+(O) is 
+ ' ( O )  by definition, then this is related to the logarithmic derivative of the Green 
function by 

a = p '  (5.6) 

depending on whether the wavefunction corresponds to a state propagating to the right 
(-) or to the left (+), as is easily seen by repeating the above analysis for the latter case. 

We note that for one given medium, 4'  is always continuous, but for a matched 
system it might or might not be. It is therefore in order to specify that the counterpart 
of (5.4) is 

+'(-0) = P I T ' + ( O )  (5.7) 

when + corresponds to incidence from the right, in which case 

+ ( O )  == %%'42(0). (5.8) 

Now consider a bound matching state, often called a surface state. For z and z'  

(5.9) 

Take residues at the energy of a surface state. Then G, has no residue at this energy 
and we obtain 

(5.10) 

The formulae always contain a reference to the incident amplitude. 

on side p ,  the formula for G, can be identically cast as 

G,(z, 2 ' )  =G,(z, z' )+G,(z ,  O)S~'(~,-%,)S;'G(O, 2 ' ) .  

J I S ( z )  = G,(z,  o)S,'+,(O) - G,(z,  O ) ~ C ' + s ( 0 ) .  

But the matching equation is precisely 

re;'+,(o) =o.  (5.11) 

Thus 

+ s ( z )  = G,(z, O)S,'+,(O) z E p .  (5.12) 

I t  is easy to relate these results to the definition of the transfer matrix. For one 

K(z,O)=G(Z,O)F'  =MA*(z,O)+MAD(Z,O)~'= ' .  (5.13) 

This defines K(z, 0). For propagating states the ( - / + I  sign is associated with propaga- 
tion to the right/left, while for bound states it is associated with evaluation of the 
wavefunction on the right/left of the reference point z = 0. This result relates the two 
concepts of transfer matrix used in the literature. M is a full transfer matrix which 
transfers amplitudes and derivatives. K is a matrix which transfers amplitudes only. 
In practice this is a useful object only for cases like homogeneous media with simple 
models, when it can be easily evaluated. But (5.13) gives a formula which can be used 
in all cases and only requires a suitable numerical algorithm for evaluating M. 

The QW or sandwich structure can be likewise studied by taking, say, 1 as the 
reference point z = 0. Bound states of the well are particularly important. These are 
matching solutions. Let +, indicate the amplitude at 1. Then for Z E  1 (5.12) holds 
with p = 1 for +, and +,(O). I t  is convenient to define 

with no reference, of course, to any incident amplitude. 

given medium we find 

(5.14) 
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Then, for z E 2, i.e. inside the well or barrier, 
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(5.15) 

(5.16) 

Thus everything is expressed in terms of the reference amplitude only. The Green 
function elements entering these formulae can be evaluated from the corresponding 
transfer matrices by using the results of section 4. 

The dependence on energy and  2~ wavevector U is understood everywhere, but 
the SL has additional distinct features. The wavefunctions now have a I D  wavevector 
q, corresponding to propagation in the z direction. However, all the SL states are 
matching states given by the matching equation 

& I l j S  = 0. (5.17) 

This holds for both the SL and the y w  cases, but in the latter 6;’ depends on K while 
in the former it depends on K and q. The z dependence of +,(z) for all S L  states can 
be written down in terms of formulae with the same form as for bound states of the 
QW. Thus 

while (5.15) yields +,(z) for 1s z G r .  In both cases 

Ks(r, 1) = &(r, I)%;’. 

(5.18) 

(5.19) 

In the S L  case the q dependence enters through (i)  Ks(r, 1) and (ii) + p ,  as this is the 1 
part of qS given by (5.17). The wavefunction for the SL can now be calculated again 
in terms of the constituent transfer matrices. 

6. Practical aspects 

For the sake of clarity and  conciseness, we have often referred to electronic states and  
to the matching of logarithmic derivatives of the wavefunction, but the formal theory 
given here holds quite generally provided the derivative is replaced by the linear 
differential form appropriate to each different physical problem [ 13. 

The case of a standard Schrodinger equation with given crystal potential, or 
pseudopotential, constitutes an important field of application. Another practical 
example is that of effective mass or  envelope function models, which in spite of their 
limitations are frequently used because of their comparative flexibility. In this case 
the form of the differential matrix, which entails the form of the boundary conditions 
for matching problems, has been abundantly discussed. A recent study, with references 
to earlier work, can be found in [12]. Here we are only concerned with the question 
of how to handle a given starting differential matrix. In  practice one is faced with a 
problem of the form 

AW”+ B W ’ + C W  = EW (6.1) 
where W is an  N-component vector and  A, 6 and C are in general z-dependent N x N 
matrices. These may depend, for instance, on the procedure one chooses to ensure 
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the Hermitian character of the Hamiltonian, but this does not change the form of (6.1). 
It is trivial to see that this is equivalent to the first-order differential system 

0 
A-'( E 1 - C )  -A-'B 

where l N  is the N x N unit matrix. This is the system for which one evaluates the 
transfer matrix. One could define the supervector @ in a different way in which +' is 
replaced by the linear form A+'+B [13], as (6.1) leads to the continuity of this form. 
When the matrices A and B are z dependent this becomes rather more complicated, 
while (6.2) holds whether they are constant or z dependent. Although some envelope 
function models may involve up  to fourth-order derivatives [ 141-a case which is also 
easily reduced to a first-order system-the second-order differential system is by far 
the most frequent and  important case, not only for electronic states but also for other 
types of elementary excitations. 

The formalism presented here shows how, once the model has been defined, both 
G ,  and 4, can be written down in terms of the transfer matrices of the constituent 
media so that all the effects of the matching are exactly included. Note that due  to 
(2.13) the problem of evaluating normal derivatives is reduced to evaluating the 
submatrices of M. Efficient numerical algorithms exist for this which are explained 
in [l] .  Thus ultimately one has an  expedient way of calculating the Green function 
of the wavefunction of layered systems, whence the desired physical information can 
be extracted in the standard way. 

Especially interesting is the applicability to problems involving significant 
inhomogeneities. These may arise, for instance, in epitaxially grown structures like 
graded walls, QWS with parabolic or other z-dependent profiles, n - i - p - i  SLS or  
z-dependent image potential wells. All these problems can be studied with this method, 
and  some have actually been studied in the preliminary applications quoted above. 
But the most interesting aspect is the new inroad this opens into performing self- 
consistent calculations at surfaces or interfaces by matching Green functions. Suppose 
one  starts with the ideal interface (broken curves in figure 1) so G i  and G: are the 
Green functions of the infinite perfect media A and B. Even if these can be easily 
obtained and  used for the matching calculation, the problem is that the charge density 
profile one obtains from this is not consistent with the starting potential profile V 
(broken curves in figure 1). One then has a different potential profile V' (solid curves 
in figure 1)  and the matching calculation must be repeated. The question is what are 
then G A  and GI, and how does one evaluate them? The method presented here, and  
used in [ lo]  for N = 1, shows how this can be done. Once the numerical algorithm 
for the evaluation of the transfer matrix has been set up, it can be used for any potential 
profile as input. This opens a very attractive possibility of the self-consistent calculation 
of interface or  layered structures. 

The use of the transfer matrix M, which transfers amplitudes and  derivatives, to 
study matching problems appears to be very scarce altogether. We have already 
mentioned the work of Ram-Mohan et al [ 131, where M is used to solve the eigenvalue 
problem for superlattices. The practical question of evaluating M numerically is solved 
there by repeated multiplication of matrices of the form 

M(z,,-, ,  z,) =exp(P,J, ,) .  (6.3) 

The double-sized first-order differential system is defined as in (6.2) with the W' part 
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of Q, replaced by A W + B ,  as mentioned above. P is then the matrix multiplying @ 
in the first-order differential system. The integration interval is divided into small 
increments A,, = z,,, - z ,  and P, is the value of P in the nth interval. While the matrix 
P can be diagonalised by means of standard subroutines, i t  is well known that the 
calculation of the exponential of an arbitrary matrix can be a tricky numerical problem 
[15]. The method is also inherently not very accurate, as it amounts to replacing the 
potential by discrete steps evaluated in the one-point approximation. Other numerical 
techniques are being implemented in the practical applications, currently in progress, 
of the formalism presented here. 

The method of [13] has been used in [16] to study the quantum well problem as 
the limit of a superlattice when the thickness of one of the constituent slabs is very 
large. The approach developed here is different. Green functions and wavefunctions 
are obtained in complete form for either the superlattice or the quantum well. In  the 
latter case this provides a natural way of giving proper distinct treatments to bound 
and  scattering states from the beginning. This could be a suitable setting for studying 
problems of actual reflection or transmission across a barrier. The matching analysis 
presented here holds for wells or barriers equally. 

The concept of the transfer matrix is a natural one for studying transmission across 
barriers and  it has been abundantly used for these problems in the form defined in 
[3], i.e. the matrix which transfers amplitudes. Usually this is done in the context of 
one-band models. The most advanced analysis in this line is a recent study [17] of 
resonant tunnelling of holes in double-barrier heterostructures in a four-band envelope 
function model. With piecewise constant coefficients, and in the envelope function 
approximation, one can obtain analytically the eigenfunctions for the Hamiltonians 
of the constituent media. The wavefunctions of the matched system are then expressed 
as linear combinations of the said eigenfunctions. The form is the same in all domains 
but the coefficients change. The transfer matrix is defined to transfer the coefficients 
of these linear combinations. If one knows the analytical form of the amplitudes one 
can then also write down the form of the derivatives and thus complete matching can 
be effected. This method works well provided one knows the basis functions explicitly. 
The analysis presented here does not require this and can be used by proceeding 
directly from the z-dependent potential, or coeflicients of the differential system, as 
numerical input. This can also have some practical advantages. Sometimes one may 
know the eigenfunctions of  the constituent media, but these can be numerically rather 
intractable. A case in point is the image potential often used to study image states on 
metal surfaces [18-201. The eigenfunctions of a potential going like ( z  - z , ) - '  and 
converging at infinity are known. They are Whittaker functions, which are rather 
cumbersome for numerical work. Thus one often resorts to an approximation [21] in 
which these are approximated in terms of Bessel and Neumann functions, which are 
also non-trivial to handle numerically. One may gain in accuracy by proceeding directly 
from the potential [ lo] which, on the other hand, need not be known analytically. 

Various applications of the formalism presented here are currently in progress. 
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